Roll No.
Total Printed Pages - 8

F-3769

B.Sc. (Part - III) Examination, 2022
(Old / New Course)
MATHEMATICS
Paper Second
(Abstract Algebra)

Time : Three Hours]
[Maximum Marks:50

नोट: सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न से कोई दो भाग हल कीजिये। सभी प्रश्नों के अंक समान हैं।

Note: All questions are compulsory. Attempt any two parts of each question. All questions carry equal marks.

$$
\text { इकाई - 1/Unit - } 1
$$

1. (A) मान लो G एक समूह है। मान लो Aut (G), G के सभी स्वाकारिताओं के समुच्चय को दर्शाता है तथा $A(G), G$ के सभी क्रमचयों का समूह है। तब सिद्ध कीजिए कि $\operatorname{Aut}(\mathrm{G})$,
$A(G)$ का एक उपसमूह होता है।
Let G be a group. Let Aut (G) denote the set of all automorphism of G and $A(G)$ be the group of all permutations of G. Then prove that $A u t(G)$ is a subgroup of $A(G)$.
(B) सिद्ध कीजिए कि $\mathrm{N}(\mathrm{a}), a \in \mathrm{G}$ का प्रसामान्यक, समूह G का एक उपसमूह होता है।

Prove that $N(a)$, the normalizer of a, is a subgroup of the group G.
(C) यदि A, B एक समूह G के परिमित उपसमूह है, तब दर्शाइये कि

$$
\mathrm{o}(A x B)=\frac{\mathrm{o}(A) \mathrm{o}(B)}{\mathrm{o}\left(A \cap x B x^{-1}\right)}
$$

If A, B are finite subgroups of a group G, then show that

$$
\mathrm{o}(A x B)=\frac{\mathrm{o}(A) \mathrm{o}(B)}{\mathrm{o}\left(A \cap x B x^{-1}\right)}
$$

इकाई-2/Unit-2

2. (A) यदि f, वलय $(\mathrm{R},+, \cdot)$ से वलय $\left(R^{\prime},+^{\prime}, \cdot^{\prime}\right)$ पर एक समाकारिता है, तो सिद्ध कीजिए कि त्रिक (Kerf,,$+ \cdot),(R$, $+, \cdot)$ की एक गुणजावली है।

If f is a homomorphism from a ring ($\mathrm{R},+, \cdot$) into a ring $\left(R^{\prime},+^{\prime},{ }^{\prime}\right)$, then prove that the triplate (Ker f, $+, \cdot)$ is an ideal of $(R,+, \cdot)$.
(B) $\left(I_{6},{ }_{6}, x_{6}\right)$ पर निम्न बहुपदों का योग और गुणन ज्ञात कीजिए -

$$
\begin{aligned}
& f(x)=5+4 x+3 x^{2}+2 x^{3}, g(x)=1+4 x+5 x^{2}+x^{3} \\
& \text { जहाँ } I_{6}=\{0,1,2,3,4,5\}
\end{aligned}
$$

Find the sum and product of the following polynomials over the ring $\left(I_{6},+{ }_{6}, x_{6}\right)$:

$$
f(x)=5+4 x+3 x^{2}+2 x^{3}, g(x)=1+4 x+5 x^{2}+x^{3}
$$

where $I_{6}=\{0,1,2,3,4,5\}$
(C) मानलो f एक R - माड्यूल M अंतर्क्षेपी एक $R-$ माड्यूल N पर एक समाकारिता है। तब सिद्ध कीजिए कि f एक तुल्याकारिता है यदि और केवल यदि $\operatorname{Kerf}=\{0\}$.

Let f be a homomorphism of an R - module M into an R - module N. Then prove that f is an isomorphism if and only if $\operatorname{Ker} f=\{0\}$.

इकाई-3/Unit - 3
3. (A) सिद्ध कीजिए कि सदिश समष्टि $V(F)$ का अरिक्त उपसमुच्चय W सदिश उपसमष्टि होगा, यदि और केवल यदि $a, b \in F$ तथा $\alpha, \beta \in w \Rightarrow a \alpha+b \beta \in w$

Prove that the non-empty subset W of a vector space $V(F)$ is a subspace if and only if $a, b \in F$ and $\alpha, \beta \in w \Rightarrow a \alpha+b \beta \in w$
(B) मानलो $s=\left\{\alpha_{1}, \alpha_{\left.2, \ldots \ldots \ldots \ldots, \alpha_{n}\right\}, \mathrm{n} \text { विमीय एक }}\right.$ सदिश समष्टि $V(F)$ का एक आधार है। तब सिद्ध कीजिए कि V का प्रत्येक अवयव α अद्वितीयतः

$$
\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots \ldots \ldots .+a_{n} \alpha_{n}
$$

जहाँ $a_{1}, a_{2}, \ldots \ldots \ldots a_{n} \in F$, के रूप में व्यक्त किया जा सकता है।

Let $s=\left\{\alpha_{1}, \alpha_{2, \ldots \ldots \ldots . .}, \alpha_{n}\right\}$ be a basis of a finite dimensional vector space $V(F)$ of dimension n. Then prove that every element \propto of V can be uniquely expressed as
$\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots \ldots \ldots+a_{n} \alpha_{n} ;$
where $a_{1}, a_{2}, \ldots \ldots . . a_{n} \in F$
(C) यदि W_{1} और W_{2} एक परिमित विमीय सदिश समष्टि V (F) की दो उपसमष्टियाँ हैं, तब सिद्ध कीजिए कि $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$ If W_{1}, W_{2} are two subspaces of a finite dimensional vector space $V(\mathrm{~F})$, then prove that
$\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$

इकाई-4/Unit-4

4. (A) सिद्ध कीजिए कि प्रत्येक $n-$ विमीय सदिश समष्टि $V(F)$, $V_{n}(F)$ से तुल्याकारी होती है।

Prove that every n - dimensional vector space V (F) is isomorphic to $V_{n}(F)$.
(B) मानलो $V(F)$ तथा $U(F)$ क्षेत्र F पर सदिश समष्टियाँ हैं। मानलो $T: V \rightarrow U, V$ आच्छादक U से एक रैखिक रूपान्तरण है, जिसका कर्नेल है। तब दर्शाइये कि $v / k \cong U$.

Let $V(F)$ and $U(F)$ be vector spaces over the field F. Let $T: V \rightarrow U$ be a linear transformation
from V onto U with Kernel K . Then prove that $\mathrm{V} / \mathrm{k} \cong U$
(C) यदि $\alpha=\left(x_{1}, x_{2}, x_{3}\right), \beta=\left(y_{1}, y_{2}, y_{3}\right)$ तथा

$$
\begin{aligned}
& f(\alpha, \beta)=3 x_{1} y_{1}-2 x_{1} y_{2}+5 x_{2} y_{1}+7 x_{2} y_{2}-8 x_{2} y_{3} \\
& +4 x_{3} y_{2}-x_{3} y_{3}
\end{aligned}
$$

तो f का आव्यूह ज्ञात कीजिए।
Let $\alpha=\left(x_{1}, x_{2}, x_{3}\right), \beta=\left(y_{1}, y_{2}, y_{3}\right)$ and

$$
\begin{aligned}
& f(\alpha, \beta)=3 x_{1} y_{1}-2 x_{1} y_{2}+5 x_{2} y_{1}+7 x_{2} y_{2}-8 x_{2} y_{3} \\
& +4 x_{3} y_{2}-x_{3} y_{3}
\end{aligned}
$$

then find the matrix of f
इकाई - 5/Unit - 5
5. (A) यदि α, β एक आन्तर गुणन समष्टि के सदिश है, तो सिद्ध कीजिए कि $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$ तथा ज्यामितीय निर्वचन दीजिए।

If α, β are vectors in an inner product space V , prove that $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$ and give the geometrical interpretation.
(B) यदि $\mathrm{V}(\mathrm{F}), x$ में बहुपदों का एक सदिश समष्टि है, जिसमें आन्तर गुणनफल निम्न रूप में परिभाषित है :
$(p, q)=\int_{0}^{1} p(x) q(x) d x$
जहाँ $\mathrm{p}=\mathrm{p}(x), q=q(x) \in V$. तब $\mathrm{p}(x)=x+2$,
$q(x)=x^{2}-2 x-3$ के लिए ज्ञात कीजिए (i) (p, q)
तथा (ii) p और q के बीच का कोण
If $\mathrm{V}(\mathrm{F})$ be a vector space of all polynomials in x in which an inner product is defined by
$(p, q)=\int_{0}^{1} \mathrm{p}(x) q(x) d x \quad$ where $\mathrm{p}=\mathrm{p}(x)$
and $q=q(x) \in V$
Then for $\mathrm{p}(x)=x+2, q(x)=x^{2}-2 x-3$,
find (i) (p, q) and (ii) between p and q.
(C) यदि α, β किसी आन्तर गुणन समष्टि $\mathrm{V}(\mathrm{F})$ के सदिश

हैं तथा $a, b \in F$, तब सिद्ध कीजिए कि

$$
4(\alpha, \beta)=\|\alpha+\beta\|^{2}-\|\propto-\beta\|^{2}+i\|\alpha+i \beta\|^{2}-i\|\alpha-i \beta\|^{2}
$$

If α, β are vectors in an inner product space $\mathrm{V}(\mathrm{F})$ and $a, b \in F$, then prove that

$$
4(\alpha, \beta)=\|\alpha+\beta\|^{2}-\|\propto-\beta\|^{2}+i\|\alpha+i \beta\|^{2}-i\|\alpha-i \beta\|^{2}
$$

